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Abstract
We propose a formally exact statistical field theory for describing classical
fluids with ingredients similar to those introduced in quantum field theory.
We consider the following essential and related problems: (i) how to find the
correct field functional (Hamiltonian) which determines the partition function,
(ii) how to introduce in a field theory the equivalent of the indiscernibility of
particles, and (iii) how to test the validity of this approach. We can use a
simple Hamiltonian in which a local functional transposes, in terms of fields,
the equivalent of the indiscernibility of particles. The diagrammatic expansion
and the renormalization of this term are presented. This corresponds to a non-
standard problem in Feynman expansion and requires a careful investigation.
Then a non-local term associated with an interaction pair potential is introduced
in the Hamiltonian. It has been shown that there exists a mapping between
this approach and the standard statistical mechanics given in terms of Mayer
function expansion. We show on three properties (the chemical potential, the
so-called contact theorem and the interfacial properties) that in the field theory
the correlations are shifted on non-usual quantities. Some perspectives of the
theory also are given.

PACS numbers: 05.20.−y, 65.40.Gr, 03.50.Kk

1. Introduction

In various domains of physics a description in terms of fields is frequently used.
Hydrodynamics represents a first example in which some fields (densities, velocities, etc) are
introduced for describing properties of a coarse grained entity—the so-called fluid particle.
Later, field theory (FT) has been used as a simple and intuitive tool to predict behaviour
of complex systems in the domain of soft matter physics [1–5]. These FT are essentially
phenomenological and rely on Hamiltonian functionals introduced in an ad hoc manner. They
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focus on a mesoscopic scale description and they are based on a more or less explicit coarse
graining procedure. In this context, Hamiltonians are introduced to describe large classes
of phenomena having similar properties though different in their microscopic details. This
further suggests another type of problems where a FT is extensively used i.e. the description of
critical phenomena. Here also the FT is based on the assumption that a detailed microscopic
knowledge of the system is not relevant to describe its universality class [6–9]. And well-suited
approximations to describe systems with long-range correlations or interactions are introduced.
In relation, field theory is also used to describe systems with the long ranged Coulomb
interactions. In this case, FT is constructed using the Hubbard–Stratonovich transform of
the standard partition function [10–12]. Better known as the sine-Gordon transform in the
case of the Coulomb potential, it has given rise to considerable literature [13–21]. These
approaches give an exact description of the systems properties on a microscopic level. In
this respect, they are distinct from the soft matter like descriptions based on a coarse graining
procedure. The sine-Gordon approaches introduce an auxiliary field and intricate couplings
between fluctuating fields. In our opinion, this auxiliary field is essentially a mathematical tool,
difficult to associate with any physical quantity. As a result finding meaningful approximations
is rather counterintuitive and the application of such approaches requires that one be rather
cautious [22].

In contrast to these approaches, our main goal is to show that it is possible to write a FT
directly in terms of fields using methods similar to those used in quantum field theory (QFT).
Namely, we show that it is possible to build the theory around a field, which is a real quantity
having a simple physical meaning. Moreover we will show that our FT construction is not
only simple and intuitive but also leads to a complete description at microscopic level. In this
paper, we consider systems at equilibrium.

The paper is organized as follows. In the following section we present the main
requirements which an FT must verify. In section 3, we give the Hamiltonian on which the FT
is based: it contains two terms of different nature. This leads us to investigate the Feynman
expansion of a purely local Hamiltonian with an infinite number of coupling constants. This is
developed in section 4 where some important specific aspects of the expansion are shown. In
section 5 we calculate the partition function in the presence of an interaction pair potential. In
section 6 we establish an exact mapping between our FT and the standard statistical mechanics
given in terms of Mayer expansion [23]. In section 7 we illustrate on several examples how
our approach may lead to new aspects in statistical physics. Finally, in section 8 we give some
conclusions and perspectives.

2. Requirements for a field theory

Our main assumption is that the partition function �[φ] of a classical system can be described
exactly via a functional integral defined according to

�[φ] =
∫

Dφ exp{−βH [φ]} (1)

in which φ is a field, H [φ] a functional of this field which we call Hamiltonian, and
β = 1/(kBT ) is the inverse of the temperature.

To use (1) we must solve several problems. We have to define φ and also find an explicit
form for H [φ]. It is intuitive to choose for φ a real quantity as the density of matter ρ for
instance. This choice represents a fundamental difference from the Hubbard–Stratonovitch-
type approaches in which two fields are used, one being a complex quantity. In comparison
with the standard description of the liquid state, where the configuration space spans all

2



J. Phys. A: Math. Theor. 41 (2008) 125401 D di Caprio and J P Badiali

possible distributions of the particles, here ρ is a function defined everywhere in space. As
a consequence the number of degrees of freedom in (1) is related to the space discretization
required to calculate the functional integral as opposed to the number of particles. Then we
have to solve a new problem of how to transpose in FT a property mimicking the indiscernibility
of particles. To relate the FT and the usual physics we assume that the average of the field,
〈ρ〉, corresponds to the actual density of particles noted as ρ̃.1

In addition to the indiscernibility of particles, the so-called classical statistical mechanics
contains the volume of the elementary cell �p�x = h̄ or, at least, after integration over
momenta in the case of systems at equilibrium, the thermal de Broglie wavelength �. Thus
we also have to find how such quantities associated with particles appear in a FT.

In contrast to the Hubbard–Stratonovitch-type descriptions which are finite as they
represent a rigorous mathematical transformation of a finite quantity, we expect that a field
theory, as is often the case, will contain infinities associated with the short scale spatial
discretization of the functional integral. This will require the introduction of a renormalization
procedure.

Finally, to be able to assert that the FT is also an exact representation, we have to show
that there exists a rigorous mapping between the FT and the standard statistical mechanics of
dense systems. Hereafter we turn our attention to all these questions.

3. Defining the Hamiltonian

To build H [ρ] we follow an approach inspired by the methods developed in QFT where instead
of H [ρ] the Lagrangian L[φ] is considered. To find the latter, we select a functional and check
that the mean field approximation of the theory reproduces a well-known result, for instance,
the Maxwell equations in quantum electrodynamics. In this case, L[φ] can be considered a
good choice for elaborating the complete theory including the fluctuations via the functional
integral.

In statistical thermodynamics, it is only for systems without interactions, ideal systems,
that we know an exact and general result and have the explicit expression of the partition
function, �̃0. We then consider such systems and require that the Hamiltonian H0[ρ] reproduce
the thermodynamic partition function �̃0 in a mean field estimation of (1). However, since �̃0

is a cornerstone in classical statistical mechanics and contains fundamental physics related to
� and the indiscernibility of particles, we further require that H0[ρ] reproduce �̃0 exactly, i.e.
also beyond the mean field approximation. These fundamental aspects will then be correctly
accounted for in the FT for all systems including those with interactions. We shall now discuss
the Hamiltonian.

Having chosen the field ρ so that its average corresponds to the density of particles ρ̃,
it is evident to fix the chemical potential, µ, and choose for �̃0 the grand canonical partition
function. In this case we have the exact thermodynamic results

ln �̃0 = βpV = ρ̃V (2)

where p is the pressure, V the volume of the system and

βµ = ln(ρ̃�3) (3)

where the exact density ρ̃ is uniformly distributed in space. A simple Hamiltonian H0[ρ] that
reproduces (3) in a mean field approximation of (1) is

βH0[ρ] =
∫

dr{ρ(r)[ln(ρ(r)�3) − 1] − βµρ(r)}. (4)

1 Quantities associated with the thermodynamics as opposed to those calculated from the FT will generally be
indicated with a tilde.
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As for the Lagrangian L[φ] in QFT we cannot claim that H0[ρ] is unique. However we see
that the part

F [ρ] =
∫

dr ρ(r)[ln(ρ(r)�3) − 1] (5)

of H0[ρ] represents, in the mean field approximation, the free energy of an ideal system i.e.
the kinetic energy and the entropy. In section 7, we compare F [ρ] with the DFT (density
functional theory) [24–26] where a similar term appears.

The requirement that H0[ρ] gives the exact result entails a more careful analysis of the
functional integral �0[ρ]. In order to calculate practically (1), we have to introduce in the rhs
a lattice with a spacing a. The result will then depend on this parameter. In the following, our
intention is to find conditions to obtain the exact thermodynamic result whatever be the value
of a. The discrete form of βH0[ρ] is

βH0[ρ] =
V/a3∑

i

ρ(ri )a
3[ln(ρ(ri )�

3) − 1] − βµ

V/a3∑
i

ρ(ri )a
3 (6)

and the partition function becomes

�0[ρ] =
∫ V/a3∏

i=1

d[ρ(ri )a
3] e−βH0[ρ] (7)

where we have used in the measure the dimensionless quantity ρ(ri )a
3. Due to the local

character of H0[ρ], the calculation of �0 is a product of usual integrals, such as∫
d[ρ(ri )a

3] exp{−ρ(ri )a
3[ln(ρ(ri )�

3) − 1] + βµρ(ri )a
3}. (8)

Beyond the saddle point, we have

ln �0[ρ] = ρ̃V

[
1 +

1

ρ̃a3
ψ[ρ̃a3]

]
(9)

where the function ψ given in the appendix represents the correction to the exact
thermodynamic result ρ̃V given in (2). As expected, the correcting term becomes negligible
when ρ̃a3 is large. However, the discretization has introduced a cumbersome dependence on
the lattice spacing a, which we would like to dispose off, keeping only physically meaningful
terms. Before discussing this point, we generalize this result for an external potential.

To calculate local integrals the previous result for the partition function can easily be
extended by changing βµ into βµ − V ext(ri ) where the external potential is in temperature-
reduced units. Instead of (9) we now have

ln �0[ρ, V ext] =
V/a3∑

i

ρ̃a3 e−V ext(ri ) +
V/a3∑

i

ψ[ρ̃a3 e−V ext(ri )] (10)

where the last term on the rhs of (10) is described in the appendix. If V ext(ri ) ≈ 1, the
corrective term is still negligeable when ρ̃a3 is large. Equation (10) is correct as long as
V ext(ri ) does not vary rapidly on the distance a which is already large in comparison with the
mean distance between particles (≈ρ̃−1/3). This condition is a restriction on the validity of
(10).

It is possible to release such a constraint and generalize equation (10) to any external
potential by noting that all physical terms for this system have a well-defined dependence on

4



J. Phys. A: Math. Theor. 41 (2008) 125401 D di Caprio and J P Badiali

the lattice spacing, distinct from the corrections associated with ψ . We now take into account
the following quantity:

ln �R
0 [ρ, V ext] = ln �0[V ext] −

V/a3∑
i

ψ[ρ̃a3 e−V ext(ri )] (11)

=
V/a3∑

i

ρ̃a3 e−V ext(ri ). (12)

The renormalized quantity is now equal to its value at the saddle point whatever the value of a.
From an operational point of view this result must be understood as follows: exp{−βH0[ρ]}
is a formal expression. It represents an expansion of the exponential around its saddle point
value and in this expansion terms corresponding to ψ[ρ̃a3 e−V ext(ri )] are discarded in order to
obtain the physical quantities.

In the limit a → 0, the renormalized grand potential is now a finite quantity and its value

ln �R
0 [ρ, V ext] =

∫
ρ̃ e−V ext(r) dr, (13)

corresponds to the standard statistical mechanics result valid for any external potential which
is independent of a.

Note that the change of limit due to the presence of a potential is a standard problem in
statistical mechanics as shown in [27]. For an ideal system the so called classical statistical
mechanics is obtained in the limit h̄ → 0 whatever the value of �. However, in the presence
of an interaction potential, an extra limit � → 0 must be taken in order to keep all information
about the interaction potential.

From the results obtained in this section we assume that the total Hamiltonian will be in
the form of

βH [ρ] = βH0[ρ] +
1

2

∫
dr dr′ρ(r)βv(r − r′)ρ(r′) (14)

where at this stage there is a non-local term due to the presence of the interaction pair potential
v(r − r′).

Hereafter our main goal is to give an operational meaning to (14) as we have already done
in the case of βH0[ρ]. To calculate the partition function, we need to expand exp{−βH [ρ]}.
In QFT the calculation of similar quantities is done by introducing a Gaussian propagator and
performing the so-called loop expansion. Here H0[ρ] is purely local and it is not traditional
to give a Feynman expansion for such a term. We have to find a formal propagator and a loop
expansion associated with H0[ρ] in order to be able to treat the local and non-local part of
H [ρ] on the same footing. In the next section we shall investigate the properties of H0[ρ] and
will show that this expansion is also fundamental when an interaction potential is present.

4. Feynman expansion of H0[ρ]

By using the fact that H0[ρ] is local we have obtained a first expansion equations (10) and
(A.5) of �0[V ext]. In parallel a second expansion can be performed with Feynman graphs.
Since both expansions are expressed in terms of ρ̃a3 and −V ext we may identify term by term
the expansion coefficients and by this method, as we shall see, solve complex problems of
combinatory.

To have a simple Feynman expansion, we choose a constant field ρz as a reference state.
Our choice—obviously not unique—is to take ρz = eβµ/�3 corresponding to the activity
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[28]2. This choice combines two interesting points: (i) it gives an expansion in terms of
activity which will be useful when in section 6 we compare our results to the Mayer expansion
and (ii) it leads to a very simple propagator.

4.1. Gaussian propagator, perturbative expansion

Hereafter we write the field as ρ(r) = ρz + δρ(r) and have

βH0[ρ, V ext] = βH
(0)
0 [ρz, V

ext] + βH
(2)
0 [δρ] + βδH [δρ, V ext] (15)

where the first term is constant,

βH
(0)
0 [ρz, V

ext] = −ρzV +
V/a3∑

i

V ext(ri )ρza
3. (16)

The second term is quadratic

βH
(2)
0 = 1

2ρza3

V/a3∑
i,j

δρ(ri )a
3δij δρ(rj )a

3 (17)

and the Kronecker δij plays formally the role of an interaction. Following the terminology of
the QFT we call the quadratic term propagator. The remaining term represents the coupling
part of the Hamiltonian given by

βδH [δρ, V ext] =
V/a3∑

i

V ext(ri )δρ(ri )a
3 +

V/a3∑
i

∞∑
l�3

(−1)l(l − 2)!

(ρza3)(l−1)

(
1

l!
[δρ(ri )a

3]l
)

. (18)

It shows the specificity of the present FT, with an infinity of coupling terms whose coefficients
depend on a numerical factor and the parameter ρza

3.
In order to achieve a diagrammatic expansion we rewrite the partition function according

to

�0[V ext, J ] =
∫ V/a3∏

i=1

d[ρ(ri )a
3] exp

⎧⎨
⎩−βH0[ρ, V ext]

α
+

V/a3∑
i

J (ri )ρ(ri )a
3

⎫⎬
⎭ (19)

where H0[ρ, V ext] includes the external potential, J is a generating field and α is a parameter,
formally equal to 1, which is useful to organize the loop expansion in QFT [7, 8]. We can
perform the functional integral, using the Gaussian integrals [6–9] and express the result
formally as

�0[V ext, J ] = exp

{
−βH

(0)
0 [ρz, V

ext]

α

}
(
√

2πρza3α)V/a3

× exp

{
−β

α
δH

[
δ

δJ
, V ext

]}
exp

⎧⎨
⎩αρza

3

2

V/a3∑
i,j

J (ri )δij J (rj )

⎫⎬
⎭ . (20)

The second line introduces the operator obtained by replacing the field δρ(r)a3 with the
derivation operator δ/δJ (r),

βδH

[
δ

δJ
, V ext

]
=

V/a3∑
i

V ext(ri )
δ

δJ (ri )
+

V/a3∑
i

∞∑
l�3

(−1)l(l − 2)!

(ρza3)(l−1)

(
1

l!

[
δ

δJ (ri )

]l
)

. (21)

2 ρ̃ and ρz are identical in the present case of the system without interactions.
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propagatorn ≥ 3 coupling term external weight

Figure 1. Diagrammatic elements for the graph representation.

Figure 2. Example of a diagram.

This operator is applied to the last term on the rhs of (20) which is Gaussian [6–9]. The
calculation is performed expanding the operator exp{−(β/α)δH [δ/δJ, V ext]}. Taking J = 0
at the end of the calculation, we select terms with pairs of derivatives acting on the same
quadratic form, which corresponds to the well-known Wick theorem [6–9]. Note that going
from the density-field representation of �0 to the generating functional representation, we
invert the kernel of the quadratic form. In the present case, this is a simple operation which
consists in taking the inverse coefficient.

4.2. Diagrammatic representation

The diagrammatic representation of the theory is organized [6–9] around vertices representing
couplings of the field obtained from the expansion of exp{−βδH/α} and lines joining the
vertices representing the propagator. The symbols used to draw these elements are shown
in figure 1. The propagator is represented by a curly line. The coupling terms will be
denoted by a black circle, where three or more propagators can be joined; the precise number
is understood from the number n of lines joined to it. An important feature in knowing
explicitly the Hamiltonian functional is that, as opposed to the phenomenological FT, we
can workout precisely all coefficients for the couplings. Hence, besides the standard 1/n!,
the coefficient is (−1)(n−1)(n − 2)!/(ρza

3)n−1. The case of the vertex, with only one line
attached to it, is drawn by a crossed circle and is associated with the external weight −V ext(r).
Depending on whether we use the generating functional representation or not, a coupling term
may represent [δρ(r)a3]n or [δ/δJ (r)]n. Furthermore, otherwise specified, we shall take into
account connected graphs related to the logarithm of the partition function.

Let us now define some topological elements. The external branches are the one body
coupling constants together with the only propagator which can be attached to it. Internal
lines are propagators which are not in external branches.

The graph in figure 2 is an example of a diagram. The points 7, 8, 9 are vertices, the
points 1, . . . , 6 are the external weights and there are 6 external branches and two internal
lines.
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4.3. Topology

4.3.1. Dimensional analysis. The diagrammatic representation of ln �0[ρ] leads to an
infinity of graphs that we can classify, as a common practice in FT, by using a dimensional
analysis in terms of the parameter α [6–9]. This corresponds to the loop expansion. A diagram
with L loops is dimensionally associated with αL−1. For instance, the diagram in figure 2,
which is a tree diagram (L = 0), is indeed proportional to 1/α. In the following, our purpose
is to show that the dimensional analysis in terms of the formal parameter α can be associated
with a physical parameter of the system.

The standard analysis allows us to relate the number of elements in a graph (lines, vertices)
to the number of loops [6–9] according to

L − 1 = I + E − m (22)

where I is the number of internal lines, E the number of external lines, and m the number of
vertices. These include also the one-point vertices. The latter associated with the external
potential set the power in −V ext. The rhs of this relation shows that the power in α of the
graph corresponds, in agreement with the expression of the partition function equation (20), to
a factor 1/α for each of the m vertices, α(I+E), for the internal and external lines. It is tempting
to consider the quantity ρza

3 instead of α which appears in the calculation in a similar way.
Here, we also have to account for the power of this term in each coupling term, equation (18).
Let mi be this power for each of the m coupling vertices. Considering that each line is attached
to two vertices, we have

m∑
i=1

mi = 2I + 2E. (23)

Using equation (22)

m∑
i=1

mi = 2(L + m − 1) (24)

which is also

−
m∑

i=1

(mi − 1) + I + E = −(L − 1). (25)

On the left-hand side we recognize the contribution in powers of ρza
3 in the graph: each

vertex contributes 1/(ρza
3)mi−1, and there are I + E lines each contributing ρza

3. Thus we
obtain a relation between the overall power of ρza

3 of the graph and the number of loops.
The role of the parameter for ρza

3 is then equivalent to that of 1/α. In the following, we no
longer introduce the factor α, as its role is redundant. All graphs can be computed exactly and
we shall avoid explicit indexing of the points in the expressions, as finally all points are the
same and we shall only discuss combinatory. The value of a graph is a numerical coefficient,
a power of ρza

3 and of −V ext(r).

4.3.2. Tree graphs. First we take the case L = 0, which corresponds to tree graphs.
From dimensional analysis, all tree graphs with n external branches are proportional to
ρza

3[−V ext(ri )]n and the value of their sum can be written as

ρza
3cn[−V ext(ri )]

n (26)

8
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where cn is a combinatorial coefficient. The value can be obtained by equating this expression,
linear in ρza

3 with the corresponding term in equation (11) for each point ri . Thus

ρza
3

( ∞∑
n=0

cn[−V ext(ri )]
n

)
= ρza

3 e−V ext(ri ). (27)

Order by order in powers of V ext, this equation sets cn = 1/n! for any n � 3 and we can
generalize the notion of trees to all n. Indeed, one can verify that the cases n = 0 and n = 1
relate to the expression of exp{−βH0[ρza

3]} which from equation (15) give c0 = 1 and c1 = 1
moreover the calculation of the quadratic term in V ext gives c2 = 1/2. Now we know the
combinatory for the n-tree graphs. The result is extremely simple.

Of course cn can be also calculated directly by performing the sum of graphs and such a
direct calculation shows that the rather simple and intuitive value of cn results in fact from the
combination of different graphs.

4.3.3. Loop graphs. Let us now consider the class of connected diagrams which have at least
one loop (L � 1) and n external branches that we refer to as nL-loop graphs.

For L > 1, the dimensional analysis states that a given L corresponds to a power of
1/(ρza

3). We consider graphs with L > 1 loops and n external branches. For given values of
L and n, the dimensional analysis for the sum of all such graphs leads to the expression

dL

(ρza3)(L−1)

c′
n,L

n!
[−V ext(ri )]

n (28)

where dL are the coefficients of the expansion of ψ given in the appendix, and c′
n,L is a

combinatory coefficient.
The case L = 1 is specific, for n = 0 we have

1
2 ln(2πρza

3) (29)

and for n � 1

c′
n,1

n!
[−V ext(ri )]

n. (30)

The contributions for any n in equation (28)–(30) can be obtained from term by term
identification with the function ψ in equation (A.5) for all powers of ρza

3 and −V ext. For
L = 1, the comparison gives c′

1,1 = 1/2 and for n �= 1 and c′
n,1 = 0. For L > 1, we must

have c′
n,L = (1 − L)n. Clearly, the c′

n,L can also be calculated by performing the sum of the
corresponding graphs.

4.4. Ideal system vertex functions

In the following, we define an important object in the diagrammatic expansion. For n �= 2, we
define the nT -vertex functions as the functions obtained from n-tree graphs by erasing the n
external branches3. The value of the sum of all graphs contributing to a nT -vertex function is

ρza
3 1

n!

[
1

(ρza3)

δ

δJ (r)

]n

(31)

where 1/(ρza
3)n derives from the fact that we have erased from the tree graph n external

propagators and [δ/δJ (r)]n refers to the n points where this vertex function can be combined

3 Note that these vertex functions are not the 1-particle irreducible functions of the field theory associated with a
Legendre transform [6–9].
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to the rest of the graph. The combinatorial coefficient is that of the corresponding n-tree graph.
The generalization for the case n = 2 will be given later. The general expression is applicable
in this case also. The expression of these tree vertices constitutes an important result of this
paper. It states that despite the variety of graphs contributing to an nT -vertex, all occur as if
we have a standard coupling of the field at a given point, with a coefficient which besides the
standard 1/n!, is simply 1.

Starting from graphs with any number n of external branches and loops L, we define the
nL-vertex functions, obtained similarly to the tree-vertex functions, by removing the n external
branches. For L = 1 there is a single nonzero term for n = 1

1

2

[
δ

δJ (r)

]
(32)

the other terms for n �= 1 are zero. And for a given L > 1 and n, the value is given by

(1 − L)n
dL

(ρza3)L−1

1

n!

[
1

(ρza3)

δ

δJ (r)

]n

(33)

where the coefficient is that of the nL-loop graphs. The term in square brackets is again simply
related to the fact that we have removed the n external branches and created the corresponding
attaching points.

4.5. Renormalization

In the previous analysis, we have associated topological properties of n-tree and nL-loop
graphs to given powers of ρza

3 and of −V ext. This has been done in order to relate further this
topological analysis with the analytic expression of the generating functional equation (10).
The sum of tree graphs corresponds to the first term in this equation, whereas graphs with at
least one loop are part of the second term. As mentioned in section 3, expression (10) depends
on the lattice spacing whereas the interest of the renormalized partition function equation (11)
lies in the fact that it has a finite limit independent of a for vanishing lattice spacing.

Here, in order to free ourselves from the lattice spacing and obtain the renormalized
partition function, we define the following renormalization procedure which consists in
subtracting all graphs with at least one loop. This is equivalent to subtracting the
term corresponding to the function ψ in the analytic expression of the partition function,
equation (10). This procedure gives a meaning to the formal expression exp{−βH0[ρ]} by
giving an operational description in terms of diagrams. Note that after renormalization, we no
longer, strictly speaking, consider H0 and thus this functional should not be directly compared
with other formalisms where it appears. From this procedure, we now have a diagrammatic
expansion of the renormalized partition function which corresponds to the exact result for an
ideal system and which can be used for any value of a in particular in the limit of vanishing a,
which we discuss in the next section.

In the following, we shall study the system with interactions and show that the same
graphs as discussed in this section appear. We will see that for the reason of locality the
renormalization described here can be applied in this context and that we can obtain a well-
behaved theory also for the system with interactions.

The present discussion may appear like a cumbersome way of treating the simple ideal
system. However, the crucial point is to understand how the counting properties for the
particles transpose to the FT. In the following, the main tools introduced in this section will
be used to analyse the case of a system with interactions, as we are now able to expand in the
same way both local and non-local terms in H [ρ] using the Feynman expansion.

10
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5. Feynman expansion of the full Hamiltonian

Hereafter we study the generating functional

�[J ] =
∫ V/a3∏

i=1

d[ρ(ri )a
3] exp

⎧⎨
⎩−βH [ρ] +

V/a3∑
i

J (ri )ρ(ri )a
3

⎫⎬
⎭ (34)

in which H [ρ] is given in (14). Expanding the field around the activity ρz, we obtain

βH [ρ] = βH(0)[ρz, V
ext] + βH(2)[δρ] + βδH [δρ, V ext]. (35)

The first contribution is

βH(0)[ρz, V
ext] = −ρzV + 1

2ρzV ṽ0 + ρzṼ
ext

0 (36)

where we define ṽ0 = βρz

∑V/a3

j �=i v(rij )a
3 and Ṽ ext

0 = ∑V/a3

i V ext(ri)a
3. In the following, we

assume that we have subtracted the self-energy and that the interaction potential cannot be
taken at the same point, although to simplify the notation we do not explicitly indicate it. The
quadratic Hamiltonian is

βH(2)[δρ] = 1

2ρza3

V/a3∑
i,j

δρ(ri )a
3[δij + βρza

3v(rij )]δρ(rj )a
3. (37)

As noted earlier, the Kronecker δij will be treated as an interaction. The coupling Hamiltonian
is given by

βδH [δρ, V ext] =
V/a3∑

i

δρ(ri )a
3ṽ(ri ) +

V/a3∑
i

V ext(ri )δρ(ri )a
3

+
V/a3∑

i

∞∑
l�3

(−1)l(l − 2)!

(ρza3)(l−1)

(
1

l!
[δρ(ri )a

3]l
)

(38)

where ṽ(r) = βρza
3v(r). We point out that this coupling Hamiltonian is essentially the same

as for H0[ρ] with the exception of a linear term which includes the interaction potential.
Therefore the topology of the diagrammatic expansion will be similar to the expansion for
H0[ρ ]. The main modifications are in the existence of a new contribution to the propagator
and to the one-body term. We then have for the generating functional

�[J ] = exp{−βH(0)[ρz; J ]}(
√

2πρza3)V/a3

× exp

[
−βδH

[
δ

δJ
; J

]]
exp

⎧⎨
⎩−ρza

3

2

V/a3∑
i,j

J (ri )[δij + ṽ(rij )]
−1J (rj )

⎫⎬
⎭ (39)

where, like in section 4, we have substituted δρa3 by the δ/δJ and the notation [. . .]−1 indicates
the inverse. The latter can be expanded according to

[δij + ṽ(rij )]
−1 = δij − ṽ(rij ) +

V/a3∑
k

ṽ(rik)ṽ(rkj ) + · · · . (40)

In this expression, the Kronecker δij is its own inverse and the rest represents a sum of terms of
alternate signs constituted with chains of single potentials. The diagrammatic representation

11



J. Phys. A: Math. Theor. 41 (2008) 125401 D di Caprio and J P Badiali

Figure 3. Diagrammatic representation of the decomposition equation (40).

−ṽ(r) −V ext(r)

Figure 4. Diagrammatic notation for the weights at the end of the external branches.

Figure 5. Example of a tree diagram with one possible decomposition.

of this equation is given in figure 3, where the full propagator appears on the lhs while on
the rhs the curly line is the Kronecker δij and the lines represent a single interaction potential
−ṽ(rij ). We can thus generalize the notion of the tree vertex function of section 4.4 to the
two-body coupling term associated with a weight 1/(2ρza

3). The diagrammatic expansion
will be the same as the one given in the previous section, except that the full double line
replaces the curly line and that the external weight has two contributions shown in figure 4.

5.1. Topological reduction: ideal system vertex functions

Hereafter we expand the propagator according to the decomposition shown in figure 3. The
purpose is to apply a topological resummation of the theory in terms of the vertex functions
introduced in section 4.4. These vertex functions include at least two attaching points. The
case of the one-body coupling term will be detailed separately.

On the graph given in figure 5, we present an example of this expansion, where the diagram
on the right represents a possible decomposition of the total propagator of the original graph on
the left. We have omitted the labels and arbitrarily chosen one of the external weights −V ext.
On the right, for simplicity, we have chosen only the contribution to the chain of interactions
corresponding to a single interaction. These aspects are irrelevant to the present discussion.
Given the local nature of the ideal system couplings and propagators, it is interesting to isolate
in the diagrams the local parts which are indicated inside the dotted frame on the figure. Their
contribution to the graph is a numerical coefficient as they are independent for rest of the
graph.

We then consider graphs with the same backbone structure in terms of the interaction
potentials but with a different local part like, for instance, in figure 6. The sum of all such
local diagrams can be performed using the nT -vertex functions as defined in section 4.4. In the
present case, it requires the 5T -vertex and 7T -vertex functions derived from the 5T -tree and 7T -
tree. The resummation into vertex functions is equivalent to a topological reduction. Noting

12
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Figure 6. Diagram which has the same structure for the interactions as the diagram in figure 5,
but a different topology for the ideal propagator.

Figure 7. Representation of the sum of all diagrams with the same structure for interactions as
the diagram in figure 5 using the 5T -vertex and 7T -vertex functions. Amongst these we have the
diagrams of figures 5 and 6.

the ideal system vertices introduced in 4.4 by black squares, the graph is now represented
by figure 7. Clearly, the new graph corresponds to various topologically different graphs of
the original expansion in terms of the total propagator. The factor associated with each ideal
system vertex function is simply according to section 4.4: 1/[n!(ρza

3)(n−1)].
We hereafter detail the special case of the one-body coupling which according to figure 4

can have different weights: the interaction potential or the external potential. (i) First we
discuss the case when the external branch has a weight ṽ. This weight can be attached on
the ideal system propagator or on a chain of one or more potentials. These two cases are
complementary to allow for any number of interactions in the chain4. (ii) Then we consider
the external branch associated with the external potential. The case when there is a single
interaction potential on which we attach the external potential is specific. It is shown in
figure 8 where one may verify that all cases with any number of −V ext are represented. For
the case of a single interaction potential and all other cases, it is straightforward to find that
any coupling term can be decorated with a factor e−V ext

.
The topological reduction, presented here on a tree graph using the ideal system tree

vertex, can be generalized to graphs which include loops for the ideal system. The separation

4 We recall that from the decomposition in figure 3, there cannot be an ideal and an interaction propagator in series.
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−V ext(r1)

−V ext(rn)

two or more external potentials

−V ext(r)−ṽ(r)

Figure 8. Resummation of external branches with external potential on the one-body coupling
terms. The grey circle may represent any diagram and the black square a three or higher vertex
function.

into non-local and local parts related to the ideal propagator can be performed in an identical
way. We then also need to introduce the ideal system loop vertices. Having performed the
topological reduction of all local parts using either tree vertices or loop vertices, we note that
graph of an identical structure may appear once for a tree vertex and once for a loop vertex.
For a given position of all other vertices, we can combine a tree vertex and a loop vertex as they
are taken at the same point knowing that the rest of the graph is identical. The sum of these
two vertices corresponds to the two terms in the ideal system partition function, equation (10).
At this stage, we can introduce the renormalization presented in section 4.5 which corresponds
to subtracting the loop vertices. As a result we have vertices which are well behaved in the
vanishing lattice space limit.

As the potential couples distinct points, note that there cannot be a loop consisting of
a single interaction potential. More general loops which may include chains of interaction
potential are not concerned by the topological reduction associated with the ideal system and
remain unchanged.

5.2. Diagrammatic definition of the partition function

The result of this section is that the logarithm of the partition function is given by all possible
connected graphs made of non-labelled ideal system vertices i.e. nT -vertex functions (n � 2)

and internal lines corresponding to a single potential. The coefficients of the vertices are those
of the nT -vertices given in section 4.4. The external branches are either the ideal system or a
single potential propagator. At the end of the external branches we find the labelled weights
shown in figure 4.

6. Mapping between the FT and the Mayer expansion

In this section, we show that our field theory is as thorough as the standard methods in
statistical physics. In order to do this we compare our expansion with the standard Mayer
expansion. To simplify the discussion, we first consider the case where the external potential
is zero.

To elaborate this comparison, we take the standard expansion of the grand potential
in Mayer functions: f (r) = exp[−βv(r)] − 1 and activity ρz [28]. We further expand
the exponential in terms of −βv and obtain one and the sum of graphs with n � 1 lines
in parallel representing the potentials multiplied by a factor 1/n!. This corresponds to an
expansion in terms of the single potential introduced in section 5, with all possible connected
unlabelled graphs with vertices corresponding to the activity. In the following, this expansion
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will be referred to as Mayer expansion. The Mayer and Feynman graphs have the same
topological elements. They both include all possible connected graphs made of lines and
points. To then state the equivalence between the two expansions, we must discuss the
following. Firstly, although they have a similar topology, lines and vertices are associated
with different quantities. In FT, points are nT -vertices and one-body external weights, whereas
in the statistical mechanics they represent the activity. Secondly, we need to compare the
combinatory coefficients for the two expansions. Hereafter, we do not discuss the powers of
a as finally the graph is proportional to a but focus only on ρz.

First we discuss the powers in ρza
3. From the previous section, Feynman diagrams are

based on the nT -vertex functions associated with 1/(ρza
3)n−1. On these vertices, interaction

potential lines are attached and each, by relation (39), contribute with (ρza
3)2 (one instance

is explicit and one comes from the definition of ṽ). This factor can be distributed on the two
vertices to which any line is attached. By doing so we associate a single power ρza

3 to each
vertex and none to the lines. The role of the one-body vertex has to be treated separately. In
one case, the external weight ṽ is attached to the ideal system propagator. From equation (37),
the only factor ρza

3 of the ideal propagator is already distributed to the vertex inside the
diagram. One can verify that there remains one factor ρza

3 associated with the external
weight ṽ and this term corresponds to the activity which should be at the end of an external
line in the Mayer expansion. In the second case, the external weight is attached to a single
interaction potential. This corresponds to two potentials in series and we can use the two body
vertex. We can verify that here also we have the correct number of factors ρza

3 once they are
redistributed on each vertex and that we retrieve the standard Mayer graph result. The final
statement is that although in the Feynman expansion factors ρza

3 are associated both with
lines and vertices, they can formally be redistributed in order to associate a single instance of
this coefficient to each vertex. This corresponds to the Mayer diagrams expansion where the
activity is associated with the points.

The second aspect is that the nT -vertex functions are associated with the standard 1/n!
factor. This is exactly the correct combinatory so as to obtain the non-labelled graphs of
the Mayer expansion, with identical rules for the symmetry of the graphs. One only needs
to treat separately the case of the external weight, which includes the interaction potential
when it is attached to the ideal propagator. It corresponds in the Mayer expansion to a
single potential pending from a graph, the topological equivalent of an external branch in the
Feynman expansion. The expected combinatory is found in this case too.

The sum of all these results shows that the Mayer and the Feynman expansion are finally
identical. The result can be extended to the system in the presence of an external field; indeed
we have shown that any vertex function can be decorated by a factor e−V ext

. We have seen
above that each vertex function can be associated with a factor ρza

3, the multiplication of this
factor by the exponential corresponds, in the liquid-state physics, to the generalization of the
activity in the presence of an external field denoted as z∗ = ρz e−V ext

in [28].
The foremost result of this paper shows that given the renormalization introduced in

section 4.5, the result for the diagrammatic expansion is simple and leads to the equivalence
of the Feynman and Mayer graph expansions. We thus fulfil our main objective which was to
define a FT capable of describing the system at a microscopic level introducing a simple and
intuitive Hamiltonian. This confirms previous results where we have shown that our formalism
reproduces two exact results which are the virial theorem [29] and the contact theorem [30]
and will be discussed in more detail in the next section. Note that in our formalism, there is
no reference to Gibbs ensembles. The difference in number of degrees of freedom associated
with the field description and the lattice spacing a calls for the renormalization which we have
introduced in order to reproduce the correct combinatorics for particles.
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7. Discussion

From standard textbooks [27, 31], we know that the so-called classical statistical mechanics
contains two basic properties governed by quantum physics. Namely, the thermal de Broglie
wavelength, �, and the indiscernibility of particles which originates from N distinct particles,
a coefficient, N !, in the partition function. These elements are not related to the interaction
potential. In the present paper, we have shown that a simple local functional together with a
renormalization procedure can reproduce these two properties. This procedure is not modified
when an interaction pair potential is introduced in the Hamiltonian and consequently we can
then demonstrate that the theory is equivalent to the usual statistical mechanics. We have shown
that the local functional leads, in perturbation theory, to a simple combinatory of the fields. In
each monomial term, the n fields are equivalent and their permutation is associated with the
coefficient 1/n!. In other words, the local functional transposes to the FT the indiscernibility
of particles.

One characteristic of our FT is that we have been able to introduce a renormalization
procedure through which all the results are finite and independent of arbitrary lattice spacing
although there exist an infinity of coupling constants. Due to renormalization, the expression
exp{−βH [ρ]} is formal and we must consider that this quantity is defined by its series
expansion around the activity and that some terms in this expansion are cancelled by counter
terms; these are independent of the interaction potential, showing that they have no physical
meaning but are originated only by a mathematical procedure.

Achieving a microscopically faithful description shows that a simple FT is not necessarily
associated with a coarse graining and can have a level of description equivalent to that of
the standard statistical mechanics, in contrast to the common conceptions of this type of
approach [32]. Indeed, the measure we have used does not require the introduction of any
normalization constant in the partition function, necessary in the case of a coarse grained
approach.

We can also compare this FT with other microscopically exact field theoretical
descriptions. Considering a field approach without using as a starting point the standard
partition function, we deal with a renormalization that does not exist for field theories based
on the Hubbard–Stratonovich transform. On the other hand, our field is extremely simple
and has an obvious physical meaning. This contrasts with the Hubbard–Stratonovich-type
approaches, where we have to work in a complex plane with an auxiliary field for which it is
rather difficult to introduce appropriate physical approximations.

We also emphasize that FT is distinct from the DFT. Both approaches are based on the
existence of a functional of the density. However, in the two formalisms, the correlations
are treated in different ways [32, 33]. In the DFT, the form of the functional includes all
correlations and fluctuations and we know that this functional exists but ignore its exact form.
Minimizing this functional yields the equilibrium density distribution. In contrast, in FT the
functional is known and simple. The core of the FT formalism gradually is to account for the
fluctuations when calculating quantities for the system in a perturbative expansion. One part
of H [ρ] is F [ρ] which is formally like the free energy of the ideal system. A similar term
FDFT [〈ρ〉] is introduced in DFT, however it is important to point out the differences between
F [ρ] and FDFT [〈ρ〉]. F [ρ] is a functional of a field i.e. a fluctuating quantity whereas, at the
minimum, FDFT [〈ρ〉] is a function of the mean value of the fluid density. Moreover, we have
mentioned earlier that exp{−βH [ρ]} is essentially a formal expression. This illustrates one
specificity of the FT: the fluctuations of the ideal term which basically represent the entropy
must be considered on the same footing as the fluctuations related to the interaction pair
potential.
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In this respect, although our FT is equivalent to standard statistical mechanics, the two
approaches focus on different aspects of the correlations. This is the case when comparing
standard approaches, but the discussion will be extended below for the case of our FT. We are
convinced that having at disposal distinct formulations for a given quantity is indeed useful,
possibly for acquiring a broader understanding.

7.1. Examples

Hereafter we illustrate on three examples how FT leads to a new point of view on traditional
quantities.

In liquid state theory there are three classical expressions of the chemical potential. One
of them corresponds to [34]

ln(ρ̃(r)�3) + ln〈exp(βu(r))〉 + V ext(r) = βµ. (41)

A second traditional expression is given by [34–36]

ln(ρ̃(r)�3) − c(1)(T , [ρ]; r) + V ext(r) = βµ (42)

where c(1)(T , [ρ]; i) is the single-particle direct correlation function [28, 35, 36]. Finally, we
also have a relation based on a charging process of the interaction potential [27],

ln(ρ̃(r)�3) + ρ̃(r)
∫ 1

0
dξ

∫
dr′ βv(|r − r′|)g(2)(|r − r′|; ξ) + V ext(r) = βµ, (43)

where g(2)(rij ; ξ) is the pair distribution function [28] as a function of the charging parameter
ξ . We note that all these expressions emphasize properties related to the potential, whether
calculating the correlations of a quantity involving the interaction, or calculating the single-
particle direct correlation function or alternatively considering a charging process of the
interaction.

The field theoretical description leads to a new expression which can be obtained by
writing that the field is a dummy variable in the functional integral. This leads to the so called
Dyson relations [31, 37] and we obtain

〈ln(ρ(i)�3)〉 +
V/a3∑
j ;j �=i

βv(i, j)〈ρ(j)〉a3 + V ext(i) = βµ. (44)

Here the term related to the interactions is rather simple, it expresses the mean potential at
a given point without taking into account the correlations. All correlations and fluctuations
appear in the calculation of the average of the logarithm of the density field. This contrasts with
a simple term like the logarithm of the average density, which appears in standard statistical
mechanical expressions or in the DFT. As a consequence, differences in the description and a
different organization of the perturbation expansion in the FT, suggest that one should be able
to elaborate new approximations.

Let us consider now the so-called contact theorem which establishes an exact relation
between the pressure p existing in a bulk phase and the value of the density profile ρ(0) at the
wall enclosing the bulk material. This corresponds to

βp = ρ(0). (45)

In so far as this relation is concerned, discussing the derivation of this theorem is an opportunity
to emphasize the conceptual differences between the various approaches. We mention the
kinetic theory of gases, in which this relation is the consequence of the mechanical equilibrium
at the interface. In the case of DFT, the derivation is straightforward as we only need to write a
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displacement of the external potential, the interface, in two different ways. Another derivation
[38] is obtained by integrating the BGY equations. In this case, a subtle integration of the
correlations through the interface leads to the relation. Within our field-theoretical framework,
the key element is the local functional which is essential at different levels. It is crucial to
obtain the density contact value present in the contact theorem [30], but it is also necessary
to cancel supplementary terms which appear in the demonstration. In this respect, specific
relations of the field theory are also required, namely the Dyson-type relations [37].

Now, in a third example, we illustrate one of the main aspects of the FT, i.e. the existence
of an intricate coupling between counting (entropy) and interaction. Let us study the interfacial
properties of ionic fluids. From the interactions point of view of, we know that the important
quantity is the charge, the difference of densities of each species. However, this system can also
be viewed as a peculiar mixture which has a specific condition due to electroneutrality. From
this point of view, we have two terms in the ideal functional describing the indiscernibility for
each ion. Thus the natural fields are the densities describing each ion. In [39, 40], we show, in
the specific instance where the natural fields for the ideal term and for the interaction term are
distinct, that the perturbation theory leads to a coupling of the charge and of the total density
field due to the local ideal functional. This has direct consequences.

For the simple neutral interface, we show that there exists a depletion for the quadratic
fluctuations of the charge. Then, the entropic coupling between the charge field and the
total density field predicts a non-trivial profile on the total density [39, 40]. We can verify
that the contact value of this total density profile satisfies the exact condition of the contact
theorem, for the pressure calculated at the same level of approximation. We have used this
phenomenon to analyse the anomalous behaviour of the differential capacitance as a function
of the temperature [41, 42] which has been thoroughly discussed recently in experiments
[43, 44], numerical simulation [45] and theoretical approaches [46–49]. The interest of our
analysis is that it provides a simple interpretation and understanding for this phenomenon,
associating the decrease in the capacitance with the depletion of the ionic density at the
interface at low temperature and providing the physical origin of this depletion.

Moreover, the more detailed account of these entropic effects is fundamental in the case
of asymmetric, in valence, electrolytes. In [42], we have tested our FT by comparing with
the results of numerical simulations [50] and shown that the theory accounts for all main
qualitative properties of the phenomenon, in comparison with other approaches [51] which
although currently more quantitative fail to take certain features into consideration.

8. Conclusion

In this paper, we present a field theory describing classical fluids at equilibrium at the same
level as the standard statistical mechanics. We introduce a real physical field and construct
the Hamiltonian in the spirit of the QFT. This functional includes interactions and a local
functional representing the ideal system. The latter characterizes our approach and has been
thoroughly discussed. In particular, we show that it provides, for the FT, essential ingredients
in relation to quantum mechanics. The equivalence of our theory with standard statistical
mechanics is shown by establishing that the Feynman expansion of the FT is equivalent to the
standard Mayer expansion. The approach is original in that it is not a simple mapping of the
standard partition function like other field theories. Consequently, it requires a renormalization
which we describe. Its basic interest is that the theory remains simple and intuitive like
phenomenological field theories.

Establishing a field theory which is both a simple and exact representation of the statistical
mechanics has many advantages. We present possible applications. Some are related to the FT
formalism. We can, for instance, use powerful tools such as discussions in terms of symmetries
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of the system, of the fields [52]. Also, the fact of having a field variable at the microscopic
level should allow for natural bridging with the mesoscopic intuitive approaches which also
adopt the field theory description. An example can be found in [53] where a mesoscopic
Hamiltonian is presented.

Another aspect is that this formalism treats fluctuations in a different way. This type
of approach would help elaborating small systems, where fluctuations can have the same
magnitude as the quantities characterizing the system [32].

Finally, we have also shown that there is an emphasis on correlations associated with
entropic effects. Such emphasis should shed new light on the description of ionic systems, or
mixtures. For instance, we believe that the emphasis on the correlations between charge and
total density could add to the understanding of criticality in ionic systems. For such systems,
the potential couples the charge, whereas criticality characterizes a phenomenon on the total
density. Another system of interest in the field of the double layer is the study of asymmetric
in charge electrolytes, which exhibit polarization phenomena even in the vicinity of neutral
interfaces. As opposed to asymmetric in size ions, this phenomenon is not intuitive. The
difference of density between anions and cations for these asymmetric systems seems to be
the origin of such phenomena as a consequence again of entropic effects [54].
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Appendix. Beyond the ideal system saddle point

Beyond the saddle point, we can compute the integral equation (8) taking into account the
fluctuations of the field, on each lattice site we expand the density field as ρ = ρ̃ + δρ, in this
case the logarithm of the partition function is

ln �0 = ρ̃V +
V

a3
ln

[∫ ∞

−∞
dt e−t2/2 exp

( ∞∑
n=3

(−1)n+1tn

n(n − 1)(ρ̃a3)n/2−1

)]
(A.1)

where t = (ρ − ρ̃)a3/
√

ρ̃a3. Expanding the last exponent, which makes sense in the limit
of large ρ̃a3, we find that we have to calculate Gaussian integrals:

∫ ∞
−∞ t2n e−t2/2 dt =√

2π(2n − 1)!!. The result can be written as:

ln �0 = ρ̃V +
V

a3
ψ[ρ̃a3] = ρ̃V

[
1 +

1

ρ̃a3
ψ[ρ̃a3]

]
(A.2)

with

ψ[ρ̃a3] = 1

2
ln(2πρ̃a3) +

∞∑
L=2

dL

(ρ̃a3)(L−1)
(A.3)

= 1

2
ln(2πρ̃a3) − 1

24

1

(ρ̃a3)
− 1

48

1

(ρ̃a3)2
− 161

5760

1

(ρ̃a3)3
+ . . . (A.4)

with the exclusion of the first term, ψ is a power series of 1/ρ̃a3 which is asymptotically
convergent for large ρ̃a3, for which the first values of the coefficients dL are given on the
second line.

The expression in the presence of an external potential V ext(ri ) is

ψ[ρ̃ e−V ext(ri )a3] = 1

2
ln(2πρ̃a3) − 1

2
V ext(ri ) +

∞∑
L=2

dL e−(1−L)V ext(ri )

(ρ̃a3)(L−1)
(A.5)
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